Package 'reserving'

March 30, 2006

Version 0.1-2

Date 2006-03-19

Title Actuarial tools for reserving analysis

Author Markus Gesmann

Maintainer Markus Gesmann </br>

Markus.Gesmann@web.de>

Depends R (>= 2.2.0)

Suggests boot, Hmisc, lattice, MASS, grid

Description Tools for reserving analysis on insurance data, including standard chain ladder, Munich chain ladder and bootstrapping methods

License GPL Version 2 or later.

R topics documented:

BootReserve	2
ChainLadder	4
GenIns	6
Latest	7
Long.Triangle	8
Mortgage	8
MunichChainLadder	9
RAA	11
Triangle.Long	12
cumulativeTriangle	13
incrementalTriangle	14
plot.BootReserve	14
plot.ChainLadder	15
plot.MunichChainLadder	16
plotCLRatios	17
plotCLResiduals	18
tailfactor	19

Index

21

BootReserve

Description

BootReserve relies on the boot function in the boot library and gives an estimated reserve, estimated standard error as well as a distribution of the reserve back.

Usage

```
BootReserve(triangle, R = 999, quarterly = FALSE,
        YOA = c(1:nrow(triangle)),
        tail = 1, usetail = FALSE, set.seed = 1, ...)
```

Arguments

triangle	data.frame of an accumulative quarterly or yearly development triangle of at least two underwriting years. The first column of this data frame may include the underwriting years, if its name is an element of the list: "UWY", "YOA", "YoA"
R	The number of bootstrap replicates.
tail	An optinal tail factor. The default is no tail factor, hence tail=1
usetail	logical. If TRUE, the setting of tail will be ignored and the function tailfactor will be called to estimate by loglinear regression a tail factor. If FALSE the value of tail will be used as tail factor.
quarterly	logical. TRUE if the triangle contains quarterly development data. FALSE if the triangle contains yearly development data.
YOA	An optional vector of underwriting years. If the first column of object is named UWY or YOA or YoA, this column will be used.
set.seed	if not NULL, this value will be used to set the random seed.
•••	further parameters to boot.

Details

The implementation in R follwos the paper: Peter England and Richard Verrall, *Analytic and bootstrap estimates of prediction errors in claims reserving Insurance*, Mathematics and Economics **Vol. 25**, pp 281-293, 1999

Value

BootReserve gives an object of class "BootReserve" and "boot" back.

An object of class "BootReserve" is a list containing the following components:

YOA	Vector of underwriting years
Triangle	The original triangle
Latest	Vector of the latest available data for each UWY in the triangle
Ultimate	Vector of the bootstrap ultimates
Reserve	Vector of the bootstrap reserves

BootReserve

Tail	Tail factor	
BootSE	Bootstrap standard error	
ReserveSE	Prediction error of the reserve	
BootTotalSE	Bootstrap standard error over all underwriting years	
ReserveTotalSE		
	Prediction error of the reserve over all underwriting years	
ReserveTotalDist		
	Reserve distribution over all underwriting years	
Call	The original call to ChainLadder	
	Further objects of class "boot", see boot	

Warning

Also it is possible to use a tail factor, "it should be noted that no allowance has been made for a tail factor in the bootstrap calculations. It is not obvious how uncertainty in predicetd values beyond the range of data observed should be taken into account. A fixed tail factor should not be included as this will increase the reserve estimates but leave the estimation variance unchanged, thus reducing the prediction error as a percentage of the reserve estimate. Extrapolating can only increase the uncertainty, not reduce it." Peter England and Richard Verrall (1999)

Author(s)

Markus Gesmann, (Markus.Gesmann@web.de)

References

Peter England and Richard Verrall, *Analytic and bootstrap estimates of prediction errors in claims reserving Insurance*, Mathematics and Economics Vol. 25, pp 281-293, 1999

P.D.England and R.J.Verrall, *Stochastic Claims Reserving in General Insurance*, British Actuarial Journal, Vol. 8, pp443-544, 2002

See Also

See Also ChainLadder, plot.BootReserve

Examples

See the example in Appendix A in Peter England and Richard Verrall (1999)

```
data(GenIns)
GenIns
bootG <- BootReserve(GenIns, quarterly=FALSE)
bootG

# See also the example in table 33 in England and Verrall (2002)
data(RAA)
RAA
bootR<-BootReserve(RAA, quarterly=FALSE)
bootR
plot(bootR)
#
plot(bootR, byYOA=TRUE)</pre>
```

```
ChainLadder
```

Description

ChainLadder estimates the reserves and their standard errors of a given accumulative run off triangle by the chain ladder method. Quarterly and yearly development triangles are accepted.

Usage

Arguments

triangle	An accumulative triangle of quarterly or yearly development data stored in a data.frame of at least two underwriting years. The first column of this data frame may include the underwriting years, if its name is an element of the list: "UWY", "YOA", "YoA"
quarterly	logical. TRUE if the triangle contains quarterly development data. FALSE if the triangle contains yearly development data
tail	An optinal tail factor. The default is no tail factor, hence tail=1
usetail	logical. If TRUE, the setting of tail will be ignored and the function tailfactor will be called to estimate a tail factor by loglinear regression through the chain ladder ratios. If FALSE the value of tail will be used as tail factor.
YOA	An optional vector of underwriting years. If the first column of object is named "UWY" or "YOA" or "YoA", this column will be used.

Details

The implementation in R follwos the paper: The Standard Error of Chain Ladder Reserve Estimates: Recursive Calculation and Inclusion of a Tail Factor, Thomas Mack, 1999, *Astin Bulletin* Vol. 29, No.2, 361 - 266.

Value

ChainLadder returns an object of class "ChainLadder" and "data.frame". An object of class "ChainLadder" is a list containing the following components:

YOA	Vector of underwriting years
Quarterly	logical.
Triangle	The original triangle
Latest	Vector of the latest available data for each UWY in the triangle
Ratios	Vector of the chain ladder ratios
Factors	Vector of the chain ladder factors
Dev	Vector of the chain ladder development pattern
Ultimate	Vector of the chain ladder ultimate
Reserve	Vector of the chain ladder reserves

ChainLadder

Tail	Tail factor
FullTriangle	Data frame of the filled triangle by chain ladder method
sigma	Estimation of the propotional constant of the variance
mack.sef	Estimation of the standard error of the chain ladder ratios
mack.seF	Estimation of the standard error of the individiual chain ladder ratioss
MackSE	Estimation of the standard error of the reserve and ultimate by underwriting year
MackTotalSE	Estimation of the standard error for the sum of all underwriting years.
Call	The original call to ChainLadder

Author(s)

Markus Gesmann, (Markus.Gesmann@web.de)

Source

Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates, Thomas Mack, 1993, *ASTIN Bulletin* 23, 213 - 225

References

The Standard Error of Chain Ladder Reserve Estimates: Recursive Calculation and Inclusion of a Tail Factor, Thomas Mack, 1999, *Astin Bulletin* Vol. 29, No.2, 361 - 266

P.D.England and R.J.Verrall, *Stochastic Claims Reserving in General Insurance*, British Actuarial Journal, Vol. 8, pp443-544, 2002

See Also

See Also: plot.ChainLadder and plotCLRatios, plotCLResiduals for plotting and BootReserve for the bootstrapping approach

Examples

```
# See also the first example in Mack (1993)
data(GenIns)
GenIns
G<-ChainLadder(GenIns, quarterly=FALSE, usetail=FALSE, YOA=c(1997:2006))
G
G$Ratios
G$sigma^2/1000
par(mfrow=c(1,2), oma=c(0,0,2,0))
# plot the development for each underwriting year
matplot(t(GenIns), t="o", main="Cum. vs Dev Year",
xlab="Development years", ylab="Cum. Amounts")
matplot(t(incTria(GenIns)), t="o", main="Inc. vs Dev Year",
xlab="Development years", ylab="Inc. Amounts")
title("Paid Development by UWY", out=TRUE)
par(mfrow=c(1,1))
# plot development of YOA 2000
plot(G, YOA=2000, main="Paid +/- MackSE")
# plot overview
plot(G)
# lattice plot by underwriting years
plot(G, byYOA=TRUE)
```

```
# See also the second example in Mack (1993)
data(Mortgage)
Mortgage
M<-ChainLadder(Mortgage, quarterly=FALSE, usetail=FALSE)
М
M$Ratios
M$sigma^2/1000
# See also the example in Mack (1999)
MT<-ChainLadder(Mortgage, guarterly=FALSE, tail=1.05)
ΜТ
MT$Ratios
# Beware of difference in sigma[9] comparing to Mack result
MT$sigma
# See also the example in table 13 in England and Verrall (2002)
data (RAA)
R<-ChainLadder(RAA, quarterly=FALSE, YOA=1997:2006)
R
# plot as ChainLadder object, cumulatvie vs cumulative
plotCLRatios(R)
# plot as original data.frame object, incremental vs cumulative
plotCLRatios(R, inc.vs.cum=TRUE)
# concentrate on the first two dev. periods
plotCLRatios(R, inc.vs.cum=FALSE, dev=1:2)
# plot the weighted residuals
plotCLResiduals(R)
# plot chain ladder result overview
plot(R)
# lattice plot by underwriting years
plot(R, byYOA=TRUE)
```

GenIns

Run off triangle (accumulated figures) from a portfolio of general insurance policies.

Description

Run off triangle of accumulated claims data.

Usage

```
data(GenIns)
```

Format

A data frame with 10 underwriting years and 10 development years.

Source

Second moments of estimates of outstanding claims, G.C. Taylor & F.R. Ashe, *Journal of Econometrics*, **23**, pp 37-61

6

Latest

References

See Also: Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates, Thomas Mack, 1993, *ASTIN Bulletin* **23**, 213 - 225

Peter England and Richard Verrall, Analytic and bootstrap estimates of prediction errors in claims reserving Insurance, Mathematics and Economics Vol. 25, pp 281-293, 1999

P.D.England and R.J.Verrall, *Stochastic Claims Reserving in General Insurance*, British Actuarial Journal, Vol. 8, pp 443-544, 2002

Examples

```
data(GenIns)
matplot(t(GenIns), type="l")
```

Latest

Triangles

Description

Get the latest development position for each YOA of a run off triangle.

Usage

```
Latest (triangle)
```

Arguments

triangle a data.frame of a run off triangle

Value

Latest returns a vector of the latest development position.

Author(s)

Markus Gesmann, Markus.Gesmann@web.de

See Also

See Also ChainLadder

Examples

```
data(RAA)
RAA
Latest(RAA)
```

Long.Triangle Triangles

Description

Long.Triangle converts a table of three colums in a crosstab triangle, using reshape.

Usage

```
Long.Triangle(object)
```

Arguments

```
object
```

a data.frame of three columns, the first column will be interpreted as underwriting years, the second one as development period and the third one as a underwriting statistics like premium, paid, incurred, etc.

Value

Long.Triangle gives a data.frame back, with the underwriting year information in the first column and the underwriting statistic thereafter.

Author(s)

Markus Gesmann, Markus.Gesmann@web.de

See Also

See Also: Triangle.Long

Examples

```
data(RAA)
L <- Triangle.Long(RAA)
L
# convert back to triangle
Long.Triangle(L)</pre>
```

Mortgage	Development triangle (accumulated figures) of mortgage guarantee
	business

Description

Run off triangle of claims data.

Usage

data(Mortgage)

Format

A data frame with 9 underwriting years and 9 development years.

Source

Competition Presented at a London Market Actuaries Dinner, D.E.A. Sanders, 1990

References

See also table 4 in: Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates, Thomas Mack, 1993, *ASTIN Bulletin* **23**, 213 - 225

Examples

```
data(Mortgage)
Mortgage
matplot(t(Mortgage), type="l")
```

MunichChainLadder Munich Chain Ladder

Description

A reserving method that reduces the gap between IBNR projections based on paid losses and IBNR projections based on incurred losses

Usage

Arguments

paid	An accumulative paid triangle of quarterly or yearly development data stored in a data.frame of at least two underwriting years. The first column of this data frame may include the underwriting years, if its name is an element of the list: "UWY", "YOA", "YOA"
incurred	An accumulative incurred triangle of quarterly or yearly development data stored in a data.frame of at least two underwriting years.
quarterly	logical. TRUE if the triangle contains quarterly development data. FALSE if the triangle contains yearly development data
tailP	An optimal tail factor for the paid data. The default is no tail factor, hence $tail=1$
tailI	An optinal tail factor for the incurred data. The default is no tail factor, hence $tail=1$
usetail	logical. If TRUE, the setting of tailP and tailI will be ignored and the func- tion tailfactor will be called to estimate tail factors by loglinear regression through the chain ladder ratios. If FALSE the value of tailI and tailP will be used as tail factors.

YOA	An optional vector of underwriting years. If the first column of <code>object</code> is named "UWY" or "YOA" or "YOA", this column will be used.
sigmaP	optional value for the latest sigma paid figures.
sigmaI	optional value for the latest sigma incurred figures.

Details

The Munich chain ladder (MCL) method combines the paid-loss (P) and incurred-loss (I) data types by taking Q=(P/I) ratios into account in projections.

Value

MunichChainLadder returns an object of class "MunichChainLadder" and "data.frame". An object of class "MunicgChainLadder" is a list containing the following components:

Call	Function call	
YOA	Underwriting years	
Paid	Input paid triangle	
Incurred	Input incurred triangle	
Quarterly	logical	
LatestP	Latest paid position	
RatiosP	Standard chain ladder ratios for the paid triangle	
FactorsP	Standard chain ladder factors for the paid triangle	
UltimateP	Ultimate based on standard chain ladder of the paid triangle	
TailP	Tail factor used by standard chain ladder on the paid triangle	
FullTriangle	2	
	Full paid triangle based on standard chain ladder	
sigmaP	Estimation of the propotional constant of the variance for the paid development triangle	
MackSEP	Estimation of the standard error of the reserve and ultimate by underwriting year based on the paid triangle	
LatestI	Latest incurred position	
RatiosI	Standard chain ladder ratios for the incurred triangle	
FactorsI	Standard chain ladder factors for the incurred triangle	
UltimateI	Ultimate based on standard chain ladder of the incurred triangle	
TailI	Tail factor used by standard chain ladder on the incurred triangle	
FullTriangleI		
	Full incurred triangle based on standard chain ladder	
sigmaI	Estimation of the propotional constant of the variance for the incurred development triangle	
MackSEI	Estimation of the standard error of the reserve and ultimate by underwriting year based on the paid triangle	
RatiosQ	Standard chain ladder ratios of Q=P/I	
rhoP	sigma of P/I	
rhoI	sigma of I/P	

resP	Residuals of the paid development factors
resI	Residuals of the incurred development factors
resQ	Residuals of the paid/incurred development factors
resQinv	Residuals of the incurred/paid development factors
lambdaP	Paid correlation parameter
lambdaI	Incurred correlation parameter
MCLPaid	Ultimate based on Munich chain ladder of the paid triangle
MCLIncurred	Ultimate based on Munich chain ladder of the incurred triangle

Author(s)

Markus Gesmann, Markus.Gesmann@web.de

References

Munich Chain Ladder, Dr. Gerhard Quarg and Dr. Thomas Mack Corporate Actuarial Functions Munich Reinsurance Company

See Also

See Also ChainLadder

Examples

```
# data from Quarg's paper
data (MCLpaid)
MCLpaid
data (MCLincurred)
MCLincurred
M=MunichChainLadder(MCLpaid, MCLincurred, quarterly=FALSE)
M
# change sigmaP and sigmaI manually as in Quarg's paper
MCL=MunichChainLadder(MCLpaid, MCLincurred, quarterly=FALSE, sigmaP=0.1,sigmaI=0.1)
MCL
plot(MCL)
plot(MCL)
plot(MCL, plotResiduals=TRUE)
# get a second ultimate opinion
U <- MCL$UltimateI*(1+rnorm(7)/10)
plot(MCL, sndUlt=U)
```

```
RAA
```

Run-off triangle of Automatic Factultative business in General Liability

Description

Run off triangle of accumulated claims data.

Usage

data(RAA)

Format

A data frame with 10 underwriting years and 10 development years.

Source

Historical Loss Development, Reinsurance Association of Ammerica (RAA), 1991, p.96

References

See Also: Which Stochastik Model is Underlying the Chain Ladder Method?, Thomas Mack, 1994, *Insurance Mathematics and Economics*, **15**, **2**/**3**, 133-138

P.D.England and R.J.Verrall, *Stochastic Claims Reserving in General Insurance*, British Actuarial Journal, Vol. 8, pp443-544, 2002

Examples

```
data(RAA)
RAA
matplot(t(RAA), type="l")
```

Triangle.Long Triangles

Description

Triangle.Long converts a cross table, e.g. a development triangle into a table structure, using reshape.

Usage

```
Triangle.Long(triangle, YOA = c(1:nrow(triangle)), na.rm=TRUE)
```

Arguments

triangle	adata.frame.
YOA	an optional vector of years of accounts
na.rm	na.rm: logical. Should missing values be removed?

Details

Triangle.Long is the inverse function of Long.Triangle.

Value

Triangle.Long returns an object of class "data.frame".

Author(s)

Markus Gesmann, Markus.Gesmann@web.de

cumulativeTriangle

See Also

See Also: Long.Triangle

Examples

```
data(RAA)
L <- Triangle.Long(RAA)
L
# convert back to triangle
Long.Triangle(L)</pre>
```

cumulativeTriangle Triangles

Description

cumulativeTriangle gives the running sum by columns back, e.g. cumulativeTriangle converts an incremental run off triangle into an accumulative run off triangle.

Usage

```
cumulativeTriangle(triangle)
```

Arguments

triangle a data.frame, e.g. a triangle of incremental development underwriting data.

Author(s)

Markus Gesmann, Markus.Gesmann@web.de

See Also

See Also incrementalTriangle

Examples

```
data(RAA)
RAA
incRAA <- incrementalTriangle(RAA)
incRAA
cumulativeTriangle(incRAA)</pre>
```

incrementalTriangle

Triangles

Description

incrementalTriangle gives the running difference by columns back, e.g. incrementalTriangle converts an accumulative triangle into an incremental triangle.

Usage

```
incrementalTriangle(triangle)
```

Arguments

triangle a data.frame, e.g. a triangle of accumulative development underwriting data.

Author(s)

Markus Gesmann, Markus.Gesmann@web.de

See Also

See Also cumulativeTriangle

Examples

data(RAA) RAA incrementalTriangle(RAA)

plot.BootReserve Plot Diagnostics for an BootReserve Object

Description

Plotting method for objects inheriting from class "BootReserve".

Usage

```
plot.BootReserve(x, byYOA=FALSE, main="Bootstrap Reserve",...)
```

Arguments

Х	x result of ChainLadder
bу¥ОА	logical. If FALSE then plot.BootReserve plots the distribution of the cumulative reserve over all underwriting years plus a normal Q-Q plot. For byYOA=TRUE plot.BootReserve will use histogram of the lattice package to plot the bootstrap reserve for each underwriting year
main	Title for the plot
	Further arguments to plot or histogram

plot.ChainLadder

Author(s)

Markus Gesmann, Markus.Gesmann@web.de

See Also

See Also plot.default, histogram, codeBootReserve

Examples

```
data(RAA)
RAA
R<-BootReserve(RAA, quarterly=FALSE)
plot(R)
plot(R, byYOA=TRUE)</pre>
```

plot.ChainLadder Plot Diagnostics for a ChainLadder object

Description

These are methods for objects of class "ChainLadder".

Usage

```
plot.ChainLadder(x, byYOA = FALSE, YOA = NULL, sndUlt = NULL,...)
```

Arguments

Х	x result of ChainLadder
byYOA	logical. If FALSE and YOA=NULL then plot.ChainLadder produces a barplot of the latest amount plus reserve and plus/minus Mack's standard error. For byYOA=TRUE plot.ChainLadder will use xyplot of the lattice package to plot the chain ladder development of all underwriting years
YOA	if YOA is in the list of object\$YOA and byYOA=FALSE plot.ChainLadder plots the chain ladder development of the given underwriting year
sndUlt	optional, a vector of a second opinion of ultimate, to plot against chain ladder ultimate
	Further arguments to plot or xyplot

Author(s)

Markus Gesmann, Markus.Gesmann@web.de

See Also

See Also plot.default, xyplot and ChainLadder

Examples

```
data(RAA)
R<-ChainLadder(RAA, quarterly=FALSE, YOA=1995:2004)
plot(R)
plot(R, YOA=2000, main="Paid +/- MackSE")
plot(R, byYOA=TRUE)
# get a second ultimate opinion
U <- R$Ultimate*(1+rnorm(10)/10)
plot(R, byYOA=TRUE, sndUlt=U)</pre>
```

plot.MunichChainLadder

Plot Diagnostics for a MunichChainLadder object

Description

These are methods for objects of class "MunichChainLadder".

Usage

```
plot.MunichChainLadder(x, plotResiduals = FALSE, sndUlt = NULL, legend =
    TRUE, main = "Munich Chain Ladder Results", xlab =
    "YOA", col = c("lightgreen", "lightblue", "red"), ...)
```

Arguments

x x result of MunichChainLadder		
proceedada	logical. If TRUE then plot.MunichChainLadder will plot the paid and in- curred development residuals together with regression lines. If plotResiduals=FALSE then plot.MunichChainLadder produces a barplot with two bars for each underwriting year representing the ultimate based on the paid and incurred data, respectively, using standard chain ladder plus/minus Mack's standard error. The Munich chain ladder ultimate will be marked with P and I respectively.	
sndUlt	optional, a vector of a second opinion of ultimate, to plot against Munich chain ladder ultimate (only if plotResiduals=FALSE)	
legend	logical, wether to draw a legend or not	
main	title for the plot	
xlab	lable for x axes	
col	colours to be used	
	further arguments to plot or barplot	

Author(s)

Markus Gesmann, Markus.Gesmann@web.de

References

Munich Chain Ladder, Dr. Gerhard Quarg and Dr. Thomas Mack Corporate Actuarial Functions Munich Reinsurance Company

16

plotCLRatios

See Also

See Also MunichChainLadder, plot.ChainLadder, barplot, par

Examples

```
# data from Quarg's paper
data(MCLpaid)
MCLpaid
data(MCLincurred)
MCLincurred
M=MunichChainLadder(MCLpaid, MCLincurred, quarterly=FALSE)
М
# change sigmaP and sigmaI manually as in Quarg's paper
MCL=MunichChainLadder(MCLpaid, MCLincurred, quarterly=FALSE,
sigmaP=0.1, sigmaI=0.1, YOA=1998:2004)
MCL
plot(MCL)
plot(MCL, plotResiduals=TRUE)
# get a second ultimate opinion
U <- MCL$UltimateI*(1+rnorm(7)/10)</pre>
plot(MCL, sndUlt=U)
```

plotCLRatios Compare chain ladder ratios with a linear regression

Description

Chain ladder ratios are compared with the result of a linear regression

Usage

Arguments

triangle	Describe triangle here
quarterly	Describe quarterly here
dev	Describe dev here
inc.vs.cum	Describe inc.vs.cum here
xlab	Describe xlab here
ylab	Describe ylab here
main	Describe main here
col	Describe col here
	Describe here

Details

Value

Describe the value returned If it is a LIST, use

compl	Description of 'comp1'
comp2	Description of 'comp2'

•••

Author(s)

Markus.Gesmann@web.de

References

put references to the literature/web site here

See Also

See Also as ChainLadder

Examples

```
data(RAA)
R<-ChainLadder(RAA, quarterly=FALSE, YOA=1997:2006)
R
# plot as ChainLadder object, cumulatvie vs cumulative
plotCLRatios(R)
# plot as original data.frame object, incremental vs cumulative
plotCLRatios(R, inc.vs.cum=TRUE)
# concentrate on the first two dev. periods
plotCLRatios(R, inc.vs.cum=FALSE, dev=1:2)</pre>
```

plotCLResiduals Plot Diagnostics for a ChainLadder object

Description

Plot the residuals of the chain ladder ratios

Usage

```
plotCLResiduals(object, dev = NULL, col = "red", ...)
```

tailfactor

Arguments

object	Result of ChainLadder
dev	if $\operatorname{dev}\nolimits$ not NULL, then plot only the specified development period
col	color
	further arguments for plot

Details

plotCLResiduals plots the residuals of the chain ladder ratios.

Author(s)

Markus.Gesmann@web.de

See Also

See Also ChainLadder

Examples

```
data(RAA)
R <- ChainLadder(RAA, YOA=1997:2006)
plotCLResiduals(R)</pre>
```

tailfactor Tail Factor for Chain Ladder Ratios

Description

tailfactor uses a vector of chain ladder ratios to calculate an estimated tail factor via loglinear regression.

Usage

```
tailfactor(clratios)
```

Arguments

clratios vector of chain ladder ratios.

Details

Assume $f_1, \ldots, f_{n-1} > 1$ are chain ladder ratios then a possible way to arrive for the tail factor is a linear extrapolation of $ln(f_k - 1)$ by a straight line a * k + b, a < 0, together with

$$f_{tail} = \prod_{k=n}^{\infty} f_k.$$

taifactor does this with $\infty = 100$.

Value

tailfactor gives an estimated tail factor back. It gives 1 back if the log linear regression estimates a tail factor > 2.

Note

tailfactor is called if the logical option <code>usetail</code> in <code>ChainLadder</code> or <code>BootReserve</code>, is set to <code>TRUE</code>

Author(s)

Markus Gesmann, (Markus.Gesmann@web.de)

References

The Standard Error of Chain Ladder Reserve Estimates: Recursive Calculation and Inclusion of a Tail Factor, Thomas Mack, 1999, *Astin Bulletin* Vol. 29, No.2, 361 - 266

See Also

See Also BootReserve, ChainLadder

Examples

```
data(RAA)
# compare
ChainLadder(RAA, quarterly=FALSE, usetail=FALSE)
ChainLadder(RAA, quarterly=FALSE, usetail=TRUE)
```

Index

*Topic aplot plot.BootReserve, 14 plot.ChainLadder, 15 plot.MunichChainLadder, 16 plotCLRatios, 17 plotCLResiduals, 18 *Topic datasets GenIns, 6 Mortgage, 8 RAA, 11 *Topic manip cumulativeTriangle, 13 incrementalTriangle, 13 Long.Triangle,7 Triangle.Long, 12 *Topic **misc** BootReserve, 1 ChainLadder, 3 *Topic **ts** BootReserve, 1 ChainLadder, 3 Latest,7 MunichChainLadder,9 tailfactor,19 barplot,16 boot, *1*, *2* BootReserve, 1, 5, 14, 19, 20 ChainLadder, 3, 3, 7, 11, 14, 15, 18-20 class, 4, 10, 12 cumulativeTriangle, 13, 14 data.frame, 2, 4, 7-9, 12, 13 GenIns.6 histogram, 14 incrementalTriangle, 13, 13 Latest,7 lattice, 14, 15 Long.Triangle, 7, 12

Mortgage, 8 MunichChainLadder, 9, 16 par, 16 plot, 14-16 plot.BootReserve, 3, 14 plot.ChainLadder, 5, 15, 16 plot.default, 14, 15 plot.MunichChainLadder, 16 plotCLRatios, 5, 17 plotCLResiduals, 5, 18 RAA, 11 reshape, 7, 12 tailfactor, 2, 4, 9, 19 Triangle.Long, 8, 12 xyplot, 15